1,041 research outputs found

    Rapid quantification of underivatized alloisoleucine and argininosuccinate using mixed-mode chromatography with tandem mass spectrometry

    Get PDF
    Plasma elevations of the amino acids alloisoleucine and argininosuccinic acid (ASA) are pathognomonic for maple syrup urine disease and argininosuccinate lyase deficiency, respectively. Reliable detection of these biomarkers is typically achieved using methods with tedious sample preparations or long chromatographic separations, and many published amino acid assays report poor specificity and/or sensitivity for one or both of these compounds. This report describes a novel liquid chromatography tandem mass spectrometry (LC-MS/MS) method that provides rapid quantification of alloisoleucine and ASA in human plasma. The basis of this method is a mixed-mode solid phase separation that achieves baseline resolution of alloisoleucine from isobaric interferents without the use of derivatization or ion pairing agents. The inject-to-inject time is 6 min including elution, column washing and re-equilibration. Validation studies demonstrate excellent limits of quantification (1 μmol/L), linearity (r = 0.999 from 1 to 250 μmol/L), accuracy (bias = −3.8% and −10.1%), and inter-assay imprecision (CV < 8.06%) for plasma analyses. Data from long-term clinical application confirms chromatographic consistency equivalent to more traditional reversed-phase or HILIC based columns. Additional matrix studies indicate low suppression (<10%) for a wide range of amino acids and compatibility with other matrixes such as blood spot analyses. Finally, analysis of our first 257 clinical specimens demonstrates high analytic specificity and sensitivity, allowing the detection of subtle but clinically relevant elevations of alloisoleucine and ASA that may be missed by other less sensitive methods. In conclusion, the novel LC-MS/MS method reported here overcomes a number of the challenges associated with alloisoleucine and ASA quantification. Combining this approach with published incomplete amino acid quantification methods allows, for the first time, a rapid and comprehensive LC-MS/MS analysis of underivatized amino acids without the use of ion pairing agents

    Contrasting alterations to synaptic and intrinsic properties in upper-cervical superficial dorsal horn neurons following acute neck muscle inflammation

    Get PDF
    Background: Acute and chronic pain in axial structures, like the back and neck, are difficult to treat, and have incidence as high as 15%. Surprisingly, most preclinical work on pain mechanisms focuses on cutaneous structures in the limbs and animal models of axial pain are not widely available. Accordingly, we developed a mouse model of acute cervical muscle inflammation and assessed the functional properties of superficial dorsal horn (SDH) neurons.&lt;p&gt;&lt;/p&gt; Results: Male C57/Bl6 mice (P24-P40) were deeply anaesthetised (urethane 2.2?g/kg i.p) and the rectus capitis major muscle (RCM) injected with 40??l of 2% carrageenan. Sham animals received vehicle injection and controls remained anaesthetised for 2?hrs. Mice in each group were sacrificed at 2?hrs for analysis. c-Fos staining was used to determine the location of activated neurons. c-Fos labelling in carrageenan-injected mice was concentrated within ipsilateral (87% and 63% of labelled neurons in C1 and C2 segments, respectively) and contralateral laminae I - II with some expression in lateral lamina V. c-Fos expression remained below detectable levels in control and sham animals. In additional experiments, whole cell recordings were obtained from visualised SDH neurons in transverse slices in the ipsilateral C1 and C2 spinal segments. Resting membrane potential and input resistance were not altered. Mean spontaneous EPSC amplitude was reduced by ~20% in neurons from carrageenan-injected mice versus control and sham animals (20.63???1.05 vs. 24.64???0.91 and 25.87???1.32 pA, respectively). The amplitude (238???33 vs. 494???96 and 593???167 pA) and inactivation time constant (12.9???1.5 vs. 22.1???3.6 and 15.3???1.4?ms) of the rapid A type potassium current (IAr), the dominant subthreshold current in SDH neurons, were reduced in carrageenan-injected mice.&lt;p&gt;&lt;/p&gt; Conclusions: Excitatory synaptic drive onto, and important intrinsic properties (i.e., IAr) within SDH neurons are reduced two hours after acute muscle inflammation. We propose this time point represents an important transition period between peripheral and central sensitisation with reduced excitatory drive providing an initial neuroprotective mechanism during the early stages of the progression towards central sensitisation

    Pathogenic Variants in Fucokinase Cause a Congenital Disorder of Glycosylation

    Get PDF
    FUK encodes fucokinase, the only enzyme capable of converting L-fucose to fucose-1-phosphate, which will ultimately be used for synthesizing GDP-fucose, the donor substrate for all fucosyltransferases. Although it is essential for fucose salvage, this pathway is thought to make only a minor contribution to the total amount of GDP-fucose. A second pathway, the major de novo pathway, involves conversion of GDP-mannose to GDP-fucose. Here we describe two unrelated individuals who have pathogenic variants in FUK and who presented with severe developmental delays, encephalopathy, intractable seizures, and hypotonia. The first individual was compound heterozygous for c.667T>C (p.Ser223Pro) and c.2047C>T (p.Arg683Cys), and the second individual was homozygous for c.2980A>C (p.Lys994Gln). Skin fibroblasts from the first individual confirmed the variants as loss of function and showed significant decreases in total GDP-[3H] fucose and [3H] fucose-1-phosphate. There was also a decrease in the incorporation of [5,6-3H]-fucose into fucosylated glycoproteins. Lys994 has previously been shown to be an important site for ubiquitin conjugation. Here, we show that loss-of-function variants in FUK cause a congenital glycosylation disorder characterized by a defective fucose-salvage pathway

    Curvature contraction of convex hypersurfaces by nonsmooth speeds

    Get PDF
    We consider contraction of convex hypersurfaces by convex speeds, homogeneous of degree one in the principal curvatures, that are not necessarily smooth. We show how to approximate such a speed by a sequence of smooth speeds for which behaviour is well known. By obtaining speed and curvature pinching estimates for the flows by the approximating speeds, independent of the smoothing parameter, we may pass to the limit to deduce that the flow by the nonsmooth speed converges to a point in finite time that, under a suitable rescaling, is round in the C^2 sense, with the convergence being exponential

    Therapeutic efficacy of favipiravir against Bourbon virus in mice

    Get PDF
    Bourbon virus (BRBV) is an emerging tick-borne RNA virus in the orthomyxoviridae family that was discovered in 2014. Although fatal human cases of BRBV have been described, little is known about its pathogenesis, and no antiviral therapies or vaccines exist. We obtained serum from a fatal case in 2017 and successfully recovered the second human infectious isolate of BRBV. Next-generation sequencing of the St. Louis isolate of BRBV (BRBV-STL) showed >99% nucleotide identity to the original reference isolate. Using BRBV-STL, we developed a small animal model to study BRBV-STL tropism in vivo and evaluated the prophylactic and therapeutic efficacy of the experimental antiviral drug favipiravir against BRBV-induced disease. Infection of Ifnar1-/- mice lacking the type I interferon receptor, but not congenic wild-type animals, resulted in uniformly fatal disease 6 to 10 days after infection. RNA in situ hybridization and viral yield assays demonstrated a broad tropism of BRBV-STL with highest levels detected in liver and spleen. In vitro replication and polymerase activity of BRBV-STL were inhibited by favipiravir. Moreover, administration of favipiravir as a prophylaxis or as post-exposure therapy three days after infection prevented BRBV-STL-induced mortality in immunocompromised Ifnar1-/- mice. These results suggest that favipiravir may be a candidate treatment for humans who become infected with BRBV

    Biallelic variants in COX4I1 associated with a novel phenotype resembling Leigh syndrome with developmental regression, intellectual disability, and seizures

    Get PDF
    Autosomal recessive COX4I1 deficiency has been previously reported in a single individual with a homozygous pathogenic variant in COX4I1, who presented with short stature, poor weight gain, dysmorphic features, and features of Fanconi anemia. COX4I1 encodes subunit 4, isoform 1 of cytochrome c oxidase. Cytochrome c oxidase is a respiratory chain enzyme that plays an important role in mitochondrial electron transport and reduces molecular oxygen to water leading to the formation of ATP. Defective production of cytochrome c oxidase leads to a variable phenotypic spectrum ranging from isolated myopathy to Leigh syndrome. Here, we describe two siblings, born to consanguineous parents, who presented with encephalopathy, developmental regression, hypotonia, pathognomonic brain imaging findings resembling Leigh‐syndrome, and a novel homozygous variant on COX4I1, expanding the known clinical phenotype associated with pathogenic variants in COX4I1

    The GABA Transaminase, ABAT, Is Essential for Mitochondrial Nucleoside Metabolism

    Get PDF
    SummaryABAT is a key enzyme responsible for catabolism of principal inhibitory neurotransmitter γ-aminobutyric acid (GABA). We report an essential role for ABAT in a seemingly unrelated pathway, mitochondrial nucleoside salvage, and demonstrate that mutations in this enzyme cause an autosomal recessive neurometabolic disorder and mtDNA depletion syndrome (MDS). We describe a family with encephalomyopathic MDS caused by a homozygous missense mutation in ABAT that results in elevated GABA in subjects’ brains as well as decreased mtDNA levels in subjects’ fibroblasts. Nucleoside rescue and co-IP experiments pinpoint that ABAT functions in the mitochondrial nucleoside salvage pathway to facilitate conversion of dNDPs to dNTPs. Pharmacological inhibition of ABAT through the irreversible inhibitor Vigabatrin caused depletion of mtDNA in photoreceptor cells that was prevented through addition of dNTPs in cell culture media. This work reveals ABAT as a connection between GABA metabolism and nucleoside metabolism and defines a neurometabolic disorder that includes MDS

    Identification and replication of RNA-Seq gene network modules associated with depression severity

    Get PDF
    Genomic variation underlying major depressive disorder (MDD) likely involves the interaction and regulation of multiple genes in a network. Data-driven co-expression network module inference has the potential to account for variation within regulatory networks, reduce the dimensionality of RNA-Seq data, and detect significant geneexpression modules associated with depression severity. We performed an RNA-Seq gene co-expression network analysis of mRNA data obtained from the peripheral blood mononuclear cells of unmedicated MDD (n = 78) and healthy control (n = 79) subjects. Across the combined MDD and HC groups, we assigned genes into modules using hierarchical clustering with a dynamic tree cut method and projected the expression data onto a lower-dimensional module space by computing the single-sample gene set enrichment score of each module. We tested the singlesample scores of each module for association with levels of depression severity measured by the Montgomery-Åsberg Depression Scale (MADRS). Independent of MDD status, we identified 23 gene modules from the co-expression network. Two modules were significantly associated with the MADRS score after multiple comparison adjustment (adjusted p = 0.009, 0.028 at 0.05 FDR threshold), and one of these modules replicated in a previous RNA-Seq study of MDD (p = 0.03). The two MADRS-associated modules contain genes previously implicated in mood disorders and show enrichment of apoptosis and B cell receptor signaling. The genes in these modules show a correlation between network centrality and univariate association with depression, suggesting that intramodular hub genes are more likely to be related to MDD compared to other genes in a module

    The preparation of large surface area lanthanum based perovskite supports for AuPt nanoparticles: tuning the glycerol oxidation reaction pathway by switching the perovskite B site

    Get PDF
    Gold and gold alloys, in the form of supported nanoparticles, have been shown over the last three decades to be highly effective oxidation catalysts. Mixed metal oxide perovskites, with their high structural tolerance, are ideal for investigating how changes in the chemical composition of supports affect the catalysts' properties, while retaining similar surface areas, morphologies and metal co-ordinations. However, a significant disadvantage of using perovskites as supports is their high crystallinity and small surface area. We report the use of a supercritical carbon dioxide anti-solvent precipitation methodology to prepare large surface area lanthanum based perovskites, making the deposition of 1 wt% AuPt nanoparticles feasible. These catalysts were used for the selective oxidation of glycerol. By changing the elemental composition of the perovskite B site, we dramatically altered the reaction pathway between a sequential oxidation route to glyceric or tartronic acid and a dehydration reaction pathway to lactic acid. Selectivity profiles were correlated to reported oxygen adsorption capacities of the perovskite supports and also to changes in the AuPt nanoparticle morphologies. Extended time on line analysis using the best oxidation catalyst (AuPt/LaMnO3) produced an exceptionally high tartronic acid yield. LaMnO3 produced from alternative preparation methods was found to have lower activities, but gave comparable selectivity profiles to that produced using the supercritical carbon dioxide anti-solvent precipitation methodology
    corecore